Lecture 16

Waves in Layered Media

16.1 Waves in Layered Media

Because of the homomorphism between the transmission line problem and the plane-wave reflection by interfaces, we will exploit the simplicity of the transmission line theory to arrive a formulas for plane wave reflection by layered media. This treatment is not found in any other textbooks.

16.1.1 Generalized Reflection Coefficient for Layered Media

Because of the homomorphism between transmission line problems and plane waves in layered medium problems, one can capitalize on using the multi-section transmission line formulas for generalized reflection coefficient, which is

$$\tilde{\Gamma}_{12} = \frac{\Gamma_{12} + \tilde{\Gamma}_{23} e^{-2j\beta_2 l_2}}{1 + \Gamma_{12}\tilde{\Gamma}_{23} e^{-2j\beta_2 l_2}}$$
(16.1.1)

This reflection coefficient includes multiple reflections from the right of the 12 junction. It can be used to study electromagnetic waves in layered media shown in Figures 16.1 and 16.2.

Using the result from the multi-junction transmission line, we can write down the generalized reflection coefficient for a layered medium with an incident wave at the 12 interface, including multiple reflections from the right. It is given by

$$\tilde{R}_{12} = \frac{R_{12} + \tilde{R}_{23}e^{-2j\beta_{2z}l_2}}{1 + R_{12}\tilde{R}_{23}e^{-2j\beta_{2z}2l_2}}$$
(16.1.2)

where l_2 is now the thickness of the region 2. In the above, we assume that the wave is incident from medium 1 which is semi-infinite, the generalized reflection coefficient above is defined at the media 1 and 2 interface.¹ It is assumed that there are multiple reflection coming from the 23 interface, so that the 23 reflection coefficient is the generalized reflection coefficient \tilde{R}_{23} .

 $^{^{1}}$ We have borrowed Figure 16.1 from Kong's book, where the first region is Region 0. But in our lecture, the first region is Region 1.

Figure 16.1: Figure for layered media borrowed from Kong's book. Please note that in our notes, the first region is Region 1. We shall also, replace x with z and vice versa (courtesy of J.A. Kong, Electromagnetic Wave Theory).

Figure 16.2 shows the case of a normally incident wave into a layered media. For this case, the wave impedance becomes the intrinsic impedance.

Figure 16.2: The equivalence of a layered medium problem to a transmission line problem. This equivalence is possible even for oblique incidence. For normal incidence, the wave impedance becomes intrinsic impedances (courtesy of J.A. Kong, Electromagnetic Wave Theory).

We shall discuss finding guided waves in a layered medium next using the generalized reflection coefficient. For a general guided wave along the longitudinal direction parallel to the interfaces (x direction in our notation), the wave will propagate in the manner of

 $e^{-j\beta_x x}$

For instance, the surface plasmon mode that we found previously can be thought of as a wave propagating in the x direction. This wave has very interesting phase and group velocity. Hence, it is prudent to understand phase and group velocity better before doing this.

16.2 Phase Velocity and Group Velocity

Now that we know how a medium can be frequency dispersive in the Drude-Lorentz-Sommerfeld (DLS) model, we are ready to distinguish the difference between the phase velocity and the group velocity

16.2.1 Phase Velocity

The phase velocity is the velocity of the phase of a wave. It is only defined for a monochromatic signal (also called time-harmonic, CW (constant wave), or sinusoidal signal) at one given frequency. A sinusoidal wave signal, e.g., the voltage signal on a transmission line, can take the form

$$V(z,t) = V_0 \cos(\omega t - kz + \alpha) \tag{16.2.1}$$

This sinusoidal signal moves with a velocity

$$v_{ph} = \frac{\omega}{k} \tag{16.2.2}$$

where, for example, $k = \omega \sqrt{\mu \varepsilon}$, inside a simple coax. Hence,

$$v_{ph} = 1/\sqrt{\mu\varepsilon} \tag{16.2.3}$$

But a dielectric medium can be frequency dispersive, or $\varepsilon(\omega)$ is not a constant but a function of ω as has been shown with the Drude-Lorentz-Sommerfeld model. Therefore, signals with different ω 's will travel with different phase velocity.

More bizarre still, what if the coax is filled with a plasma medium where

$$\varepsilon = \varepsilon_0 \left(1 - \frac{\omega_p^2}{\omega^2} \right) \tag{16.2.4}$$

Then, $\varepsilon < \varepsilon_0$ always meaning that the phase velocity given by (16.2.3) can be larger than the velocity of light in vacuum (assuming $\mu = \mu_0$). Also, $\varepsilon = 0$ when $\omega = \omega_p$, implying that k = 0; then in accordance to (16.2.2), $v_{ph} = \infty$. These ludicrous observations can be justified or understood only if we can show that information can only be sent by using a wave packet.² The same goes for energy which can only be sent by wave packets, but not by CW signal; only in this manner can a finite amount of energy be sent. These wave packets can only travel at the group velocity as shall be shown, which is always less than the velocity of light.

 $^{^{2}}$ In information theory, according to Shannon, the basic unit of information is a bit, which can only be sent by a digital signal, or a wave packet.

Waves in Layered Media

16.2.2 Group Velocity

Figure 16.3: A Gaussian wave packet can be thought of as a linear superposition of monochromatic waves of slightly different frequencies. If one Fourier transforms the above signal, it will be a narrow-band signal centered about certain ω_0 (courtesy of Wikimedia [101]).

Now, consider a narrow band wave packet as shown in Figure 16.3. It cannot be monochromatic, but can be written as a linear superposition of many frequencies. One way to express this is to write this wave packet as an integral in terms of Fourier transform, or a summation over many frequencies, namely

$$V(z,t) = \int_{-\infty}^{\infty} d\omega V(z,\omega) e^{j\omega t}$$
(16.2.5)

Assume that V(z,t) is the solution to the dispersive transmission line equations with $\varepsilon(\omega)$, then it can be shown that $V(z,\omega)$ is the solution to the one-dimensional Helmholtz equation³

$$\frac{d^2}{dz^2}V(z,\omega) + k^2(\omega)V(z,\omega) = 0$$
(16.2.6)

³In this notes, we will use k and β interchangeably for wavenumber. The transmission line community tends to use β while the optics community uses k.

When the dispersive transmission line is filled with dispersive material, then $k^2 = \omega^2 \mu_0 \varepsilon(\omega)$. Thus, upon solving the above equation, one obtains that $V(z, \omega) = V_0(\omega) e^{-jkz}$, and

$$V(z,t) = \int_{-\infty}^{\infty} d\omega V_0(\omega) e^{j(\omega t - kz)}$$
(16.2.7)

In the general case, k is a complicated function of ω as shown in Figure 16.4.

Figure 16.4: A typical frequency dependent $k(\omega)$ albeit the frequency dependence can be more complicated than shown.

Since this is a wave packet, we assume that $V_0(\omega)$ is narrow band centered about a frequency ω_0 , the carrier frequency as shown in Figure 16.5. Therefore, when the integral in (16.2.7) is performed, it needs only be summed over a narrow range of frequencies in the vicinity of ω_0 .

Figure 16.5: The frequency spectrum of $V_0(\omega)$.

Thus, we can approximate the integrand in the vicinity of $\omega = \omega_0$, and let

$$k(\omega) \cong k(\omega_0) + (\omega - \omega_0) \frac{dk(\omega_0)}{d\omega} + \frac{1}{2}(\omega - \omega_0)^2 \frac{d^2k(\omega_0)}{d\omega^2} + \cdots$$
(16.2.8)

To ensure the real-valuedness of (16.2.5), one ensures that $-\omega$ part of the integrand is exactly the complex conjugate of the $+\omega$ part. Another way is to sum over only the $+\omega$ part of the integral and take twice the real part of the integral. So, for simplicity, we write (16.2.5) as

$$V(z,t) = 2\Re e \int_{0}^{\infty} d\omega V_0(\omega) e^{j(\omega t - kz)}$$
(16.2.9)

Since we need to integrate over $\omega \approx \omega_0$, we can substitute (16.2.8) into (16.2.9) and rewrite it as

$$V(z,t) \cong 2\Re e \left[e^{j[\omega_0 t - k(\omega_0)z]} \underbrace{\int_{0}^{\infty} d\omega V_0(\omega) e^{j(\omega - \omega_0)t} e^{-j(\omega - \omega_0)\frac{dk}{d\omega}z}}_{F\left(t - \frac{dk}{d\omega}z\right)} \right]$$
(16.2.10)

where more specifically,

$$F\left(t - \frac{dk}{d\omega}z\right) = \int_{0}^{\infty} d\omega V_0(\omega) e^{j(\omega - \omega_0)t} e^{-j(\omega - \omega_0)\frac{dk}{d\omega}z}$$
(16.2.11)

It can be seen that the above integral now involves the integral summation over a small range of ω in the vicinity of ω_0 . By a change of variable by letting $\Omega = \omega - \omega_0$, it becomes

$$F\left(t - \frac{dk}{d\omega}z\right) = \int_{-\Delta}^{+\Delta} d\Omega V_0(\Omega + \omega_0) e^{j\Omega\left(t - \frac{dk}{d\omega}z\right)}$$
(16.2.12)

The above itself is a Fourier transform integral that involves only the low frequencies of the Fourier spectrum. Hence, F is a slowly varying function. Moreover, this function F moves with a velocity

$$v_g = \frac{d\omega}{dk} \tag{16.2.13}$$

Here, $F(t - \frac{z}{v_g})$ in fact is the velocity of the envelope in Figure 16.3. In (16.2.10), the envelope function $F(t - \frac{z}{v_g})$ is multiplied by the rapidly varying function

$$e^{j[\omega_0 t - k(\omega_0)z]}$$
 (16.2.14)

before one takes the real part of the entire function. Hence, this rapidly varying part represents the rapidly varying carrier frequency shown in Figure 16.3. More importantly, this carrier, the rapidly varying part of the signal, moves with the velocity

$$v_{ph} = \frac{\omega_0}{k(\omega_0)} \tag{16.2.15}$$

which is the phase velocity.

16.3 Wave Guidance in a Layered Media

Now that we have understood phase and group velocity, we are at ease with studying the We have seen that in the case of a surface plasmonic resonance, the wave is guided by an interface because the Fresnel reflection coefficient becomes infinite. This physically means that a reflected wave exists even if an incident wave is absent or vanishingly small. This condition can be used to find a guided mode in a layered medium, namely, to find the condition under which the generalized reflection coefficient (16.1.2) will become infinite.

16.3.1 Transverse Resonance Condition

Therefore, to have a guided mode exist in a layered medium, the denominator of (16.1.2) is zero, or that

$$1 + R_{12}\tilde{R}_{23}e^{-2j\beta_{2z}l_2} = 0 \tag{16.3.1}$$

where t is the thickness of the dielectric slab. Since $R_{12} = -R_{21}$, the above can be written as

$$1 = R_{21}\tilde{R}_{23}e^{-2j\beta_{2z}l_2} \tag{16.3.2}$$

The above has the physical meaning that the wave, after going through two reflections at the two interfaces, 21, and 23 interfaces, which are R_{21} and R_{23} , plus a phase delay given by $e^{-2j\beta_{2z}l_2}$, becomes itself again. This is also known as the transverse resonance condition. When specialized to the case of a dielectric slab with two interfaces and three regions, the above becomes

$$1 = R_{21} R_{23} e^{-2j\beta_{2z}l_2} \tag{16.3.3}$$

The above can be generalized to finding the guided mode in a general layered medium. It can also be specialized to finding the guided mode of a dielectric slab.

Bibliography

- [1] J. A. Kong, *Theory of electromagnetic waves*. New York, Wiley-Interscience, 1975.
- [2] A. Einstein *et al.*, "On the electrodynamics of moving bodies," Annalen der Physik, vol. 17, no. 891, p. 50, 1905.
- [3] P. A. M. Dirac, "The quantum theory of the emission and absorption of radiation," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 114, no. 767, pp. 243–265, 1927.
- [4] R. J. Glauber, "Coherent and incoherent states of the radiation field," *Physical Review*, vol. 131, no. 6, p. 2766, 1963.
- [5] C.-N. Yang and R. L. Mills, "Conservation of isotopic spin and isotopic gauge invariance," *Physical review*, vol. 96, no. 1, p. 191, 1954.
- [6] G. t'Hooft, 50 years of Yang-Mills theory. World Scientific, 2005.
- [7] C. W. Misner, K. S. Thorne, and J. A. Wheeler, *Gravitation*. Princeton University Press, 2017.
- [8] F. Teixeira and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," *Journal of Electromagnetic Waves and Applications*, vol. 13, no. 5, pp. 665–686, 1999.
- [9] W. C. Chew, E. Michielssen, J.-M. Jin, and J. Song, Fast and efficient algorithms in computational electromagnetics. Artech House, Inc., 2001.
- [10] A. Volta, "On the electricity excited by the mere contact of conducting substances of different kinds. in a letter from Mr. Alexander Volta, FRS Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. KBPR S," *Philosophical transactions of the Royal Society of London*, no. 90, pp. 403–431, 1800.
- [11] A.-M. Ampère, Exposé méthodique des phénomènes électro-dynamiques, et des lois de ces phénomènes. Bachelier, 1823.
- [12] —, Mémoire sur la théorie mathématique des phénomènes électro-dynamiques uniquement déduite de l'expérience: dans lequel se trouvent réunis les Mémoires que M. Ampère a communiqués à l'Académie royale des Sciences, dans les séances des 4 et

26 décembre 1820, 10 juin 1822, 22 décembre 1823, 12 septembre et 21 novembre 1825. Bachelier, 1825.

- [13] B. Jones and M. Faraday, *The life and letters of Faraday*. Cambridge University Press, 2010, vol. 2.
- [14] G. Kirchhoff, "Ueber die auflösung der gleichungen, auf welche man bei der untersuchung der linearen vertheilung galvanischer ströme geführt wird," Annalen der Physik, vol. 148, no. 12, pp. 497–508, 1847.
- [15] L. Weinberg, "Kirchhoff's' third and fourth laws'," IRE Transactions on Circuit Theory, vol. 5, no. 1, pp. 8–30, 1958.
- [16] T. Standage, The Victorian Internet: The remarkable story of the telegraph and the nineteenth century's online pioneers. Phoenix, 1998.
- [17] J. C. Maxwell, "A dynamical theory of the electromagnetic field," *Philosophical trans*actions of the Royal Society of London, no. 155, pp. 459–512, 1865.
- [18] H. Hertz, "On the finite velocity of propagation of electromagnetic actions," *Electric Waves*, vol. 110, 1888.
- [19] M. Romer and I. B. Cohen, "Roemer and the first determination of the velocity of light (1676)," Isis, vol. 31, no. 2, pp. 327–379, 1940.
- [20] A. Arons and M. Peppard, "Einstein's proposal of the photon concept-a translation of the Annalen der Physik paper of 1905," *American Journal of Physics*, vol. 33, no. 5, pp. 367–374, 1965.
- [21] A. Pais, "Einstein and the quantum theory," *Reviews of Modern Physics*, vol. 51, no. 4, p. 863, 1979.
- [22] M. Planck, "On the law of distribution of energy in the normal spectrum," Annalen der physik, vol. 4, no. 553, p. 1, 1901.
- [23] Z. Peng, S. De Graaf, J. Tsai, and O. Astafiev, "Tuneable on-demand single-photon source in the microwave range," *Nature communications*, vol. 7, p. 12588, 2016.
- [24] B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, "New approaches to nanofabrication: molding, printing, and other techniques," *Chemical reviews*, vol. 105, no. 4, pp. 1171–1196, 2005.
- [25] J. S. Bell, "The debate on the significance of his contributions to the foundations of quantum mechanics, Bells Theorem and the Foundations of Modern Physics (A. van der Merwe, F. Selleri, and G. Tarozzi, eds.)," 1992.
- [26] D. J. Griffiths and D. F. Schroeter, Introduction to quantum mechanics. Cambridge University Press, 2018.
- [27] C. Pickover, Archimedes to Hawking: Laws of science and the great minds behind them. Oxford University Press, 2008.

- [28] R. Resnick, J. Walker, and D. Halliday, Fundamentals of physics. John Wiley, 1988.
- [29] S. Ramo, J. R. Whinnery, and T. Duzer van, Fields and waves in communication electronics, Third Edition. John Wiley & Sons, Inc., 1995.
- [30] J. L. De Lagrange, "Recherches d'arithmétique," Nouveaux Mémoires de l'Académie de Berlin, 1773.
- [31] J. A. Kong, *Electromagnetic Wave Theory*. EMW Publishing, 2008.
- [32] H. M. Schey, Div, grad, curl, and all that: an informal text on vector calculus. WW Norton New York, 2005.
- [33] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman lectures on physics, Vols. I, II, & III: The new millennium edition. Basic books, 2011, vol. 1,2,3.
- [34] W. C. Chew, Waves and fields in inhomogeneous media. IEEE press, 1995.
- [35] V. J. Katz, "The history of Stokes' theorem," Mathematics Magazine, vol. 52, no. 3, pp. 146–156, 1979.
- [36] W. K. Panofsky and M. Phillips, *Classical electricity and magnetism*. Courier Corporation, 2005.
- [37] T. Lancaster and S. J. Blundell, Quantum field theory for the gifted amateur. OUP Oxford, 2014.
- [38] W. C. Chew, "Fields and waves: Lecture notes for ECE 350 at UIUC," https://engineering.purdue.edu/wcchew/ece350.html, 1990.
- [39] C. M. Bender and S. A. Orszag, Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory. Springer Science & Business Media, 2013.
- [40] J. M. Crowley, Fundamentals of applied electrostatics. Krieger Publishing Company, 1986.
- [41] C. Balanis, Advanced Engineering Electromagnetics. Hoboken, NJ, USA: Wiley, 2012.
- [42] J. D. Jackson, *Classical electrodynamics*. John Wiley & Sons, 1999.
- [43] R. Courant and D. Hilbert, Methods of Mathematical Physics: Partial Differential Equations. John Wiley & Sons, 2008.
- [44] L. Esaki and R. Tsu, "Superlattice and negative differential conductivity in semiconductors," *IBM Journal of Research and Development*, vol. 14, no. 1, pp. 61–65, 1970.
- [45] E. Kudeki and D. C. Munson, Analog Signals and Systems. Upper Saddle River, NJ, USA: Pearson Prentice Hall, 2009.
- [46] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing. Pearson Education, 2014.

- [47] R. F. Harrington, Time-harmonic electromagnetic fields. McGraw-Hill, 1961.
- [48] E. C. Jordan and K. G. Balmain, *Electromagnetic waves and radiating systems*. Prentice-Hall, 1968.
- [49] G. Agarwal, D. Pattanayak, and E. Wolf, "Electromagnetic fields in spatially dispersive media," *Physical Review B*, vol. 10, no. 4, p. 1447, 1974.
- [50] S. L. Chuang, *Physics of photonic devices*. John Wiley & Sons, 2012, vol. 80.
- [51] B. E. Saleh and M. C. Teich, Fundamentals of photonics. John Wiley & Sons, 2019.
- [52] M. Born and E. Wolf, *Principles of optics: electromagnetic theory of propagation, in*terference and diffraction of light. Elsevier, 2013.
- [53] R. W. Boyd, Nonlinear optics. Elsevier, 2003.
- [54] Y.-R. Shen, The principles of nonlinear optics. New York, Wiley-Interscience, 1984.
- [55] N. Bloembergen, Nonlinear optics. World Scientific, 1996.
- [56] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of electric machinery. McGraw-Hill New York, 1986.
- [57] A. E. Fitzgerald, C. Kingsley, S. D. Umans, and B. James, *Electric machinery*. McGraw-Hill New York, 2003, vol. 5.
- [58] M. A. Brown and R. C. Semelka, MRI.: Basic Principles and Applications. John Wiley & Sons, 2011.
- [59] C. A. Balanis, Advanced engineering electromagnetics. John Wiley & Sons, 1999.
- [60] Wikipedia, "Lorentz force," https://en.wikipedia.org/wiki/Lorentz_force/, accessed: 2019-09-06.
- [61] R. O. Dendy, Plasma physics: an introductory course. Cambridge University Press, 1995.
- [62] P. Sen and W. C. Chew, "The frequency dependent dielectric and conductivity response of sedimentary rocks," *Journal of microwave power*, vol. 18, no. 1, pp. 95–105, 1983.
- [63] D. A. Miller, Quantum Mechanics for Scientists and Engineers. Cambridge, UK: Cambridge University Press, 2008.
- [64] W. C. Chew, "Quantum mechanics made simple: Lecture notes for ECE 487 at UIUC," http://wcchew.ece.illinois.edu/chew/course/QMAll20161206.pdf, 2016.
- [65] B. G. Streetman and S. Banerjee, Solid state electronic devices. Prentice hall Englewood Cliffs, NJ, 1995.

- [66] Smithsonian, "This 1600-year-old goblet shows that the romans were nanotechnology pioneers," https://www.smithsonianmag.com/history/ this-1600-year-old-goblet-shows-that-the-romans-were-nanotechnology-pioneers-787224/, accessed: 2019-09-06.
- [67] K. G. Budden, Radio waves in the ionosphere. Cambridge University Press, 2009.
- [68] R. Fitzpatrick, Plasma physics: an introduction. CRC Press, 2014.
- [69] G. Strang, Introduction to linear algebra. Wellesley-Cambridge Press Wellesley, MA, 1993, vol. 3.
- [70] K. C. Yeh and C.-H. Liu, "Radio wave scintillations in the ionosphere," Proceedings of the IEEE, vol. 70, no. 4, pp. 324–360, 1982.
- [71] J. Kraus, *Electromagnetics*. McGraw-Hill, 1984.
- [72] Wikipedia, "Circular polarization," https://en.wikipedia.org/wiki/Circular_polarization.
- [73] Q. Zhan, "Cylindrical vector beams: from mathematical concepts to applications," Advances in Optics and Photonics, vol. 1, no. 1, pp. 1–57, 2009.
- [74] H. Haus, Electromagnetic Noise and Quantum Optical Measurements, ser. Advanced Texts in Physics. Springer Berlin Heidelberg, 2000.
- [75] W. C. Chew, "Lectures on theory of microwave and optical waveguides, for ECE 531 at UIUC," https://engineering.purdue.edu/wcchew/course/tgwAll20160215.pdf, 2016.
- [76] L. Brillouin, Wave propagation and group velocity. Academic Press, 1960.
- [77] R. Plonsey and R. E. Collin, Principles and applications of electromagnetic fields. McGraw-Hill, 1961.
- [78] M. N. Sadiku, *Elements of electromagnetics*. Oxford University Press, 2014.
- [79] A. Wadhwa, A. L. Dal, and N. Malhotra, "Transmission media," https://www. slideshare.net/abhishekwadhwa786/transmission-media-9416228.
- [80] P. H. Smith, "Transmission line calculator," *Electronics*, vol. 12, no. 1, pp. 29–31, 1939.
- [81] F. B. Hildebrand, Advanced calculus for applications. Prentice-Hall, 1962.
- [82] J. Schutt-Aine, "Experiment02-coaxial transmission line measurement using slotted line," http://emlab.uiuc.edu/ece451/ECE451Lab02.pdf.
- [83] D. M. Pozar, E. J. K. Knapp, and J. B. Mead, "ECE 584 microwave engineering laboratory notebook," http://www.ecs.umass.edu/ece/ece584/ECE584_lab_manual.pdf, 2004.
- [84] R. E. Collin, Field theory of guided waves. McGraw-Hill, 1960.

- [85] Q. S. Liu, S. Sun, and W. C. Chew, "A potential-based integral equation method for low-frequency electromagnetic problems," *IEEE Transactions on Antennas and Propagation*, vol. 66, no. 3, pp. 1413–1426, 2018.
- [86] M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Pergamon, 1986, first edition 1959.
- [87] Wikipedia, "Snell's law," https://en.wikipedia.org/wiki/Snell's_law.
- [88] G. Tyras, Radiation and propagation of electromagnetic waves. Academic Press, 1969.
- [89] L. Brekhovskikh, Waves in layered media. Academic Press, 1980.
- [90] Scholarpedia, "Goos-hanchen effect," http://www.scholarpedia.org/article/ Goos-Hanchen_effect.
- [91] K. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," in *Proceedings of the Institution of Electrical Engineers*, vol. 113, no. 7. IET, 1966, pp. 1151–1158.
- [92] E. Glytsis, "Slab waveguide fundamentals," http://users.ntua.gr/eglytsis/IO/Slab_ Waveguides_p.pdf, 2018.
- [93] Wikipedia, "Optical fiber," https://en.wikipedia.org/wiki/Optical_fiber.
- [94] Atlantic Cable, "1869 indo-european cable," https://atlantic-cable.com/Cables/ 1869IndoEur/index.htm.
- [95] Wikipedia, "Submarine communications cable," https://en.wikipedia.org/wiki/ Submarine_communications_cable.
- [96] D. Brewster, "On the laws which regulate the polarisation of light by reflexion from transparent bodies," *Philosophical Transactions of the Royal Society of London*, vol. 105, pp. 125–159, 1815.
- [97] Wikipedia, "Brewster's angle," https://en.wikipedia.org/wiki/Brewster's_angle.
- [98] H. Raether, "Surface plasmons on smooth surfaces," in Surface plasmons on smooth and rough surfaces and on gratings. Springer, 1988, pp. 4–39.
- [99] E. Kretschmann and H. Raether, "Radiative decay of non radiative surface plasmons excited by light," *Zeitschrift für Naturforschung A*, vol. 23, no. 12, pp. 2135–2136, 1968.
- [100] Wikipedia, "Surface plasmon," https://en.wikipedia.org/wiki/Surface_plasmon.
- [101] Wikimedia, "Gaussian wave packet," https://commons.wikimedia.org/wiki/File: Gaussian_wave_packet.svg.
- [102] Wikipedia, "Charles K. Kao," https://en.wikipedia.org/wiki/Charles_K._Kao.
- [103] H. B. Callen and T. A. Welton, "Irreversibility and generalized noise," *Physical Review*, vol. 83, no. 1, p. 34, 1951.

- [104] R. Kubo, "The fluctuation-dissipation theorem," Reports on progress in physics, vol. 29, no. 1, p. 255, 1966.
- [105] C. Lee, S. Lee, and S. Chuang, "Plot of modal field distribution in rectangular and circular waveguides," *IEEE transactions on microwave theory and techniques*, vol. 33, no. 3, pp. 271–274, 1985.
- [106] W. C. Chew, Waves and Fields in Inhomogeneous Media. IEEE Press, 1996.
- [107] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Courier Corporation, 1965, vol. 55.
- [108] "Handbook of mathematical functions: with formulas, graphs, and mathematical tables."